Data Science with Python Training Course

Become a Job-Ready Full Stack Software Tester with Techxeeria Technologies Pvt. Ltd..
26 Enrolled
26 week
  • 26 week
  • 0
  • 0
  • English
  • all
  • yes
₹45,000.00₹39,999.00
₹45,000.00

Course Overview

Data Science with Python is one of the most in-demand skills in today’s IT and business industries. From analyzing large datasets to building predictive models and deploying AI-powered applications, Data Science is at the core of decision-making.

At Techxeeria Technologies Pvt. Ltd., our Data Science with Python Training is designed to transform beginners into job-ready Data Scientists in just 6 months. The course covers Python programming, data analysis, statistics, machine learning, deep learning, and real-world projects, with hands-on assignments and industry-focused case studies.

Why Choose Data Science with Python Training?

Learn Python programming for Data Science (from basics to advanced)
Master NumPy, Pandas, Matplotlib, Seaborn, and Plotly for data analysis & visualization
Build strong foundations in Statistics, Probability, and Linear Algebra
Work on Machine Learning & Deep Learning projects with TensorFlow/Keras
Gain expertise in Supervised & Unsupervised ML algorithms
Hands-on Capstone Projects to boost your portfolio
Prepare for Data Scientist, ML Engineer, AI Engineer, and Analyst roles

6-Month Data Science with Python Syllabus

Month 1 – Python for Data Science (Basics + Advanced)

Week 1–2: Python Fundamentals

  • Day 1: Introduction to Data Science & Python Setup (Primary Keyword: Data Science with Python Training) 
  • Day 2: Variables, Data Types, Operators 
  • Day 3: Conditional Statements & Loops 
  • Day 4: Functions (Built-in & User-defined) 
  • Day 5: String Handling & Methods 
  • Day 6: Lists, Tuples, Sets, Dictionaries 
  • Day 7: Hands-on Practice + Mini Project 

Week 3–4: Advanced Python

  • Day 8: File Handling 
  • Day 9: Exception Handling 
  • Day 10: Modules & Packages 
  • Day 11: OOP in Python (Classes, Objects) 
  • Day 12: Inheritance, Polymorphism 
  • Day 13: Python Libraries Overview – NumPy, Pandas, Matplotlib 
  • Day 14: Mini Project – Student Data Management 

Month 2 – Data Analysis with Python

Week 5–6: NumPy & Pandas

  • Day 15: NumPy Basics – Arrays, Indexing, Slicing 
  • Day 16: NumPy Functions & Operations 
  • Day 17: Pandas – Series & DataFrames 
  • Day 18: Data Cleaning & Handling Missing Values 
  • Day 19: Data Aggregation & Grouping 
  • Day 20: Data Transformation & Merging 
  • Day 21: Mini Project – Sales Data Analysis 

Week 7–8: Data Visualization

  • Day 22: Introduction to Matplotlib 
  • Day 23: Line, Bar, Pie, Histogram Charts 
  • Day 24: Seaborn Basics – Heatmaps, Pairplots 
  • Day 25: Advanced Visualization with Seaborn 
  • Day 26: Plotly for Interactive Dashboards 
  • Day 27: Case Study – Exploratory Data Analysis (EDA) 
  • Day 28: Mini Project – COVID-19 Data Visualization 

Month 3 – Statistics & Probability for Data Science

Week 9–10: Statistics Fundamentals

  • Day 29: Descriptive Statistics (Mean, Median, Mode, Variance, SD) 
  • Day 30: Probability Basics 
  • Day 31: Probability Distributions – Normal, Binomial, Poisson 
  • Day 32: Hypothesis Testing (t-test, chi-square, ANOVA) 
  • Day 33: Correlation & Covariance 
  • Day 34: Sampling Techniques 
  • Day 35: Mini Project – Hypothesis Testing on Real Dataset 

Week 11–12: Linear Algebra & Data Preprocessing

  • Day 36: Linear Algebra Basics – Vectors, Matrices 
  • Day 37: Matrix Operations with NumPy 
  • Day 38: Data Preprocessing – Encoding, Normalization, Standardization 
  • Day 39: Feature Scaling & Feature Engineering 
  • Day 40: Handling Outliers & Imbalanced Data 
  • Day 41: Data Pipeline Building 
  • Day 42: Mini Project – Data Cleaning + Preprocessing 

Month 4 – Machine Learning with Python (Supervised ML)

Week 13–14: Regression Models

  • Day 43: Introduction to Machine Learning 
  • Day 44: Linear Regression (Simple & Multiple) 
  • Day 45: Polynomial Regression 
  • Day 46: Evaluation Metrics (MSE, RMSE, R²) 
  • Day 47: Logistic Regression (Binary Classification) 
  • Day 48: Multi-Class Logistic Regression 
  • Day 49: Mini Project – House Price Prediction 

Week 15–16: Classification Models

  • Day 50: Decision Trees 
  • Day 51: Random Forests 
  • Day 52: Naïve Bayes Classifier 
  • Day 53: K-Nearest Neighbors (KNN) 
  • Day 54: Support Vector Machine (SVM) 
  • Day 55: Model Evaluation (Confusion Matrix, ROC, AUC) 
  • Day 56: Mini Project – Customer Churn Prediction 

Month 5 – Machine Learning (Unsupervised + Advanced ML)

Week 17–18: Unsupervised Learning

  • Day 57: K-Means Clustering 
  • Day 58: Hierarchical Clustering 
  • Day 59: PCA (Principal Component Analysis) 
  • Day 60: Dimensionality Reduction 
  • Day 61: Association Rule Mining (Apriori, FP-Growth) 
  • Day 62: Mini Project – Market Basket Analysis 

Week 19–20: Ensemble & Advanced ML

  • Day 63: Ensemble Learning – Bagging, Boosting 
  • Day 64: Gradient Boosting (XGBoost, LightGBM, CatBoost) 
  • Day 65: Hyperparameter Tuning (GridSearchCV, RandomSearchCV) 
  • Day 66: Cross-Validation Techniques 
  • Day 67: Model Deployment with Pickle & Joblib 
  • Day 68: Mini Project – Loan Default Prediction 

Month 6 – Deep Learning + Final Projects

Week 21–22: Deep Learning with Python

  • Day 69: Introduction to Neural Networks 
  • Day 70: Perceptron & Activation Functions 
  • Day 71: Forward & Backpropagation 
  • Day 72: Neural Networks with TensorFlow/Keras 
  • Day 73: CNN – Convolutional Neural Networks (Image Classification) 
  • Day 74: RNN – Recurrent Neural Networks (Text/Time Series) 
  • Day 75: Mini Project – Handwritten Digit Recognition 

Week 23–24: Capstone Projects & Interview Prep

  • Day 76–80: Capstone Project 1 – EDA + Machine Learning Model 
  • Day 81–85: Capstone Project 2 – Deep Learning Project 
  • Day 86–88: Resume Building + GitHub Portfolio Setup 
  • Day 89: Mock Interviews + Coding Test Prep 
  • Day 90: Final Assessment + Certification 

Hands-On Training

  • Mini Projects in every module (Python, ML, DL) 
  • 2 Major Capstone Projects for portfolio 
  • Resume & GitHub Portfolio Setup 
  • Interview Prep + Mock Interviews 

Who Can Join?

  • Beginners aiming to become Data Scientists 
  • Python learners looking to enter AI/ML fields 
  • Students preparing for IT/Analytics placements 
  • Developers interested in ML, AI, and Data Engineering 

Career Opportunities After Course

  • Data Scientist 
  • Machine Learning Engineer 
  • AI Engineer 
  • Data Analyst 
  • Business Intelligence Analyst
There are no items in the curriculum yet.

Instructor

User Avatar

ADS WOKE

0.0
0 Reviews
469 Students
18 Courses

Feedback

0.0
0 rating
0%
0%
0%
0%
0%

Be the first to review “Data Science with Python Training Course”

+91 7248121522