Course Overview
Data is the backbone of modern business, and Data Analytics is one of the most sought-after skills in the industry today. Techxeeria Technologies Pvt. Ltd. offers a comprehensive Data Analytics using Excel, SQL & Python Course that transforms beginners into job-ready professionals in 6 months. This course combines Excel, SQL, and Python training, along with real-world projects and hands-on assignments, preparing students for roles like Data Analyst, Business Analyst, and Analytics Consultant.
Why Choose This Data Analytics Training?
- Learn Excel for data management, visualization, and dashboard creation
- Master SQL for querying, data manipulation, and reporting
- Gain Python skills for data handling, cleaning, visualization, and automation
- Work on mini-projects and capstone projects for practical experience
- Resume building, portfolio creation, and mock interviews for career readiness
6-Month Data Analytics Syllabus (Day 1–180)
Month 1 – Excel for Data Analytics
Week 1: Excel Basics
- Day 1: Introduction to Excel & Data Analytics
- Day 2: Excel Interface & Shortcuts
- Day 3: Data Entry, Formatting & Cleaning
- Day 4: Sorting & Filtering Data
- Day 5: Conditional Formatting
- Day 6: Excel Tables & Structured References
- Day 7: Mini Project – Sales Data Cleaning
Week 2: Excel Functions (Beginner → Intermediate)
- Day 8: Text Functions – LEFT, RIGHT, CONCAT, TRIM
- Day 9: Math Functions – SUM, AVERAGE, ROUND
- Day 10: Logical Functions – IF, AND, OR
- Day 11: Lookup Functions – VLOOKUP, HLOOKUP
- Day 12: INDEX & MATCH
- Day 13: Date & Time Functions
- Day 14: Mini Project – HR Data Analysis
Week 3: Data Analysis Tools
- Day 15: Pivot Tables Basics
- Day 16: Advanced Pivot Tables – Grouping, Slicers
- Day 17: Pivot Charts
- Day 18: Power Query – Data Cleaning Automation
- Day 19: Power Pivot & Data Model
- Day 20: Data Consolidation Techniques
- Day 21: Mini Project – Regional Sales Dashboard
Week 4: Data Visualization in Excel
- Day 22: Bar, Line, Pie, Combo Charts
- Day 23: Advanced Charts – Waterfall, Funnel
- Day 24: Conditional Charts
- Day 25: Dashboard Design Principles
- Day 26: Interactive Dashboards with Slicers
- Day 27: Excel Add-ins for Analytics
- Day 28: Project – Business Dashboard in Excel
Month 2 – SQL for Data Analytics
Week 5: SQL Basics
- Day 29: Introduction to Databases & SQL
- Day 30: Installing MySQL / PostgreSQL
- Day 31: Basic Queries – SELECT, WHERE, ORDER BY
- Day 32: Aliases & DISTINCT
- Day 33: Aggregate Functions – SUM, AVG, COUNT
- Day 34: GROUP BY & HAVING
- Day 35: Mini Project – Retail Sales Queries
Week 6: Joins & Relationships
- Day 36: INNER JOIN
- Day 37: LEFT & RIGHT JOIN
- Day 38: FULL OUTER JOIN
- Day 39: SELF JOIN
- Day 40: UNION & INTERSECT
- Day 41: Subqueries & Nested Queries
- Day 42: Mini Project – Employee Database
Week 7: SQL Advanced Queries
- Day 43: CASE Statements
- Day 44: String Functions
- Day 45: Date & Time Functions
- Day 46: Window Functions – ROW_NUMBER, RANK
- Day 47: Common Table Expressions (CTE)
- Day 48: Views in SQL
- Day 49: Mini Project – Customer Segmentation
Week 8: SQL for Data Analytics
- Day 50: Data Cleaning with SQL
- Day 51: Exploratory Data Analysis (EDA) using SQL
- Day 52: Correlated Subqueries
- Day 53: Advanced Joins with Multiple Tables
- Day 54: Performance Optimization – Indexes
- Day 55: Case Study – Business Data Analysis
- Day 56: Project – Analytics on E-commerce Data
Month 3 – Python Basics for Analytics
Week 9: Python Fundamentals
- Day 57: Installing Python & Jupyter Notebook
- Day 58: Variables, Data Types & Operators
- Day 59: Lists, Tuples & Dictionaries
- Day 60: Conditional Statements
- Day 61: Loops – for, while
- Day 62: Functions in Python
- Day 63: Mini Project – Student Grade Calculator
Week 10: Python for Data Handling
- Day 64: File Handling – CSV, Excel, JSON
- Day 65: Numpy Basics – Arrays, Indexing
- Day 66: Numpy Operations – Math & Statistics
- Day 67: Pandas Basics – Series & DataFrames
- Day 68: Data Cleaning – Missing & Duplicate Values
- Day 69: Data Transformation – Merge, Join, GroupBy
- Day 70: Mini Project – Sales Data Cleaning with Pandas
Week 11: Python Visualization Basics
- Day 71: Introduction to Matplotlib
- Day 72: Line, Bar, Scatter Plots
- Day 73: Histograms & Boxplots
- Day 74: Subplots & Customization
- Day 75: Introduction to Seaborn
- Day 76: Heatmaps & Pairplots
- Day 77: Mini Project – HR Analytics Visualization
Week 12: Python Advanced Visualization & Automation
- Day 78: Time Series Visualization
- Day 79: Advanced Seaborn Plots
- Day 80: Plot Styling & Themes
- Day 81: Automating Reports with Python
- Day 82: Exporting Results to Excel/CSV
- Day 83: Case Study – Financial Data Analysis
- Day 84: Project – Python Data Analytics Dashboard
Month 4 – Advanced Analytics with Python & SQL
Week 13–16
- Day 85–90: Descriptive Statistics, Probability, Hypothesis Testing, Correlation Analysis, Mini Project – Sales Data
- Day 91–96: Exploratory Data Analysis (EDA), Feature Engineering, SQL + Python EDA, Mini Project – E-commerce Dataset
- Day 97–102: Python + SQL Integration, ETL, Automating Reports, Mini Project – Automated Sales Report
- Day 103–110: Data Wrangling, Handling Large Datasets, Regex, Data Transformation Pipelines, Mini Project – Real-world Data Cleaning
Month 5 – Advanced Data Analytics
Week 17–20
- Day 111–116: Time Series Analysis – Trends, Seasonality, Rolling Statistics, Mini Project – Stock Price Analysis
- Day 117–122: Predictive Analytics – Linear & Logistic Regression, Train-Test Split, Mini Project – Sales Revenue Prediction
- Day 123–128: Classification & Clustering – Decision Trees, Random Forest, K-Means, Model Evaluation, Mini Project – Loan Default Prediction
- Day 129–134: Dashboard Building – Excel Dashboards, Python Dash/Streamlit, SQL + Python + Excel Dashboard, Mini Project – Business Insights Dashboard
Month 6 – Capstone Projects & Career Prep
Week 21–24: Capstone Projects
- Day 135–145: Capstone Project 1 – Business Domain (Finance / Retail / HR)
- Day 146: Project Presentation & Review
- Day 147–157: Capstone Project 2 – Real-time Analytics (E-commerce / Marketing / Healthcare)
- Day 158: Project Presentation & Review
Week 25–26: Career Preparation
- Day 159–163: Resume Building
- Day 164–166: Portfolio Building (GitHub + LinkedIn)
- Day 167–169: Mock Interviews – SQL, Python, Analytics
- Day 170: Q&A Session – Career Guidance
- Day 171–175: Revision of Key Concepts (Excel, SQL, Python)
- Day 176–178: Final Assessment
- Day 179: Doubt Clearing & Career Planning
- Day 180: Certification & Graduation
Hands-On Training
- Mini Projects in every module (Excel, SQL, Python)
- Final Capstone Project – Full-scale Analytics Dashboard
- Cloud Deployment (Optional – AWS/Heroku)
- Resume & Portfolio Setup for Job Readiness
Who Can Join?
- Beginners aiming to become Data Analysts
- Python learners exploring SQL and Data Analytics
- Students preparing for IT placements
- Professionals upskilling for analytics roles
Career Opportunities
After completing this Data Analytics using Excel, SQL & Python Training, you can apply for roles like:
- Data Analyst
- Business Analyst
- Python Data Analyst
- SQL Data Analyst
- Analytics Consultant